
Software-Based RowHammer Mitigation with
Randomized Memory Allocation

Kento Murata, Soramichi Akiyama
Ritsumeikan University, Osaka, Japan

ACM Reference Format:
Kento Murata, Soramichi Akiyama. 2024. Software-Based RowHam-
mer Mitigation with Randomized Memory Allocation. In Asia-
Pacific Workshop on Systems (APSys’24). ACM, New York, NY, USA,
1 page. https://doi.org/XXXXXXX.XXXXXXX

1 Background and Problem
RowHammer [1] is an attack where an attacker can rewrite
memory regions inaccessible to them. It is based on elec-
tromagnetic inference inside DRAM chips and thus hard
to prevent. RowHammer can cause privilege escalation and
arbitrary binary execution.
Using Buddy system for memory management makes a

system vulnerable to RowHammer because it (1) tries to
allocate as contiguous free pages as possible and (2) is deter-
ministic. This enables an attacker (i) to allocate a physically
contiguous memory region and (ii) to return a single page
from the region and make the victim reuse that page, which
is now physically sandwiched between attacker pages.

Existing hardware-based mitigation techniques count fre-
quently accessed memory locations and trigger themselves
based on some thresholds. The problem is that the higher the
memory capacity, the lower the threshold due to stronger
electromagnetic inference. Experimental results show up to
600% overhead when the threshold is very low [2].

2 Proposal and Early Results
We propose a memory management mechanism that allo-
cates random pages to mitigate RowHammer. Allocating
random pages prevents an attacker from being able to phys-
ically sandwich a victim page. Our system is designed not
to incur many memory accesses when allocating free pages
and Figure 1 shows how it works. It divides all pages into 𝑁

blocks of𝑀 pages and selects r[i]th page from each block,
where r is the first 𝑁 elements of a random permutation of
an array {0, ..., M-1}. After an allocation, r is updated
to a new permutation that does not match any previous one
by rotating it to one direction. This guarantees that every
allocation attempt can return new random pages.
To confirm that an attacker cannot physically sandwich

a victim page in our system, we implement our system and

APSys’24, September 4 - 5, 2024, Kyoto, Japan
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

0x0000000 ⋯ ⋯	0xFFFFFFF
Physical memory region

2 4 11 13

Allocated Virtual memory region
Attacker

1 page

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 32

Random number sequence

1

1 block

⋯

Figure 1: How our system allocates pages randomly

Buddy system on top of the SE mode of gem5 and conduct
the following experiment. (1) An attacker function allocates
a memory region of 2 MiB with mmap and returns a single
page in the region with munmap. (2) A victim function allo-
cates a single page using mmap. (3) If the physical address of
the page allocated to the victim is the same as that of the
page returned by the attacker, the attacker succeeds to phys-
ically sandwich a victim page. The results is that the victim
was forced to reuse the returned page (address 0xca000) in
Buddy system, while in our system the physical addresses
of the attacker-returned and victim-allocated pages were
completely different (0x11db5000 and 0x18c1a000).

3 Future Work
Future work includes evaluating the performance overhead
of our system. We are especially interested in how modern
cache prefetchers are affected by random memory allocation.

Acknowledgments
This work was supported by JST, PRESTO Grant Number
JPMJPR22P1, Japan.

References
[1] Yoongu Kim et al. 2014. Flipping bits in memory without accessing

them: An experimental study of DRAM disturbance errors. In ISCA.
361–372.

[2] Anish Saxena et al. 2024. Rubix: Reducing the Overhead of Secure
Rowhammer Mitigations via Randomized Line-to-Row Mapping. In
ASPLOS. 1014–1028.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

	1 Background and Problem
	2 Proposal and Early Results
	3 Future Work
	Acknowledgments
	References

