
EdgeScaler: Smart (Auto-)Scaling for the 5G Edge
Lauren Trinks, Bilal Saleem, and Muhammad Shahbaz

Purdue University

Introduction andMotivation. The 5G technology is rapidly

expanding and pushing across user experience and design

boundaries. One signi�cant advancement is deploying a 5G

core as microservices on edge clouds, strategically positioned

close to end users [4]. These 5G edge clouds facilitate ap-

plications with high computational demands to o�oad pro-

cessing tasks, resulting in millisecond scale latencies per

UE request [1]. Notably, the minimal latency at the edge

cloud highlights a stark contrast with centralized data cen-

ters, where network transit time typically dominates the

client request-response cycle—making the overhead associ-

ated with scheduling, scaling, and load balancing in edge

cloud environments more pronounced than in centralized

data centers [2].

While Kubernetes remains an industry standard across

both centralized data centers and edge clouds, its design and

optimization primarily cater to the workloads running on

the cloud data center architectures [3]. Our study delves into

Kubernetes’ Horizontal Pod Autoscaling (HPA) performance

concerning meeting 5G core Service Level Optimizations

(SLOs). Additionally, we present a proof of concept (PoC)

for a novel autoscaling solution, EdgeScaler, drawing inspi-

ration from emerging trends in service-mesh architectures

(Figure 1). EdgeScaler is tailored to integrate seamlessly with

any 5G core operating on Kubernetes; it aims to enhance

adherence to response latency SLOs through enhanced �exi-

bility and transparency in autoscaling behaviors, including

the use of machine learning (ML) within the decision-making

process.

• Goals: We need a scaling scheme for the 5G edge that

can bring up/down resources (e.g., pods) e�ciently without

under-utilizing (i.e., resource wastage) or over-utilizing them

(i.e., leading to high tails).

• Challenges: The lack of support and �exibility in existing

scaling schemes (e.g., k8s HPA). These are tailored for the

cloud environments and rely on �xed thresholds (i.e., %CPU)

for scaling up instances, thus resulting in long tails or idle

resources.

Design Overview. EdgeScaler consists of four key compo-

nents: (1) Metrics Collector, capable of gathering metrics

from various sources (e.g., pods and kernel); (2) Metrics Mod-

i�cation, for creating new heuristics (e.g., for smoothing and

forecasting); (3) Decision Maker, to make decisions based on

these heuristics; and 4) Executor, responsible for interacting

with k8s to scale instances up or down.

• EdgeScaler’s LSTM-based Predictor. It employs a machine-

learningmodel, speci�cally Long Short TermMemory (LSTM),

to make predictions. The model consumes a timeseries of

Tofino
Switch

Serve
r 3

VM
1

VM
2

VM
3

EVPN / VxLAN

SCTP

Registration

gNBSim Kubernetes

5G Core

Metrics ServerEdge Scaler Watcher

Tofino Switch

Server 1 Server 2

Hypervisor Hypervisor

Edge Cloud
Proxmox VE Cluster

Figure 1: Design of an EdgeScaler-based k8s Cluster.

CPU usage information over a given window and forecasts

utilization 15 minutes into the future. For our speci�c model,

we used a learning rate of 0.0001, 100 epochs, and a root

mean squared error (RMSE) of 0.0184. Predictions generated

by the model are used as the current metric value for the

scaling algorithm used in k8s HPA.

Preliminary Results. Figure 2 illustrates the advantages of

EdgeScaler. By enabling forecasting, scaling can be executed

before the load increases.When tra�c surges, more CPUs are

distributed across su�cient pods to mitigate the impact of

load spikes, reducing average CPU utilization per pod. With

precise and timely predictions, early scaling is expected to

maintain the CPU utilization target for edge workloads.

0

20

40

60

0

10

20

30

40

00:00 00:15 00:30 00:45 01:00

Time (HH:MM)

C
P

U
 U

ti
li
z
a

ti
o

n
 %

#
 o

f P
o
d
s

K8s EdgeScaler

CPU Utilization % # of Pods

Figure 2: k8s HPA vs. EdgeScaler LSTM HPA.

REFERENCES
[1] Mukhtiar Ahmad, Syed Usman Jafri, Azam Ikram, Wasiq Noor Ahmad

Qasmi, Muhammad Ali Nawazish, Zartash Afzal Uzmi, and Zafar Ayyub

Qazi. 2020. A Low Latency and Consistent Cellular Control Plane. In

ACM SIGCOMM.

[2] Batyr Charyyev, Engin Arslan, and Mehmet Hadi Gunes. 2020. Latency

Comparison of Cloud Datacenters and Edge Servers. In GLOBECOM

2020 - 2020 IEEE Global Communications Conference. 1–6. https://doi.

org/10.1109/GLOBECOM42002.2020.9322406

[3] Google Cloud. [n. d.]. What is Kubernetes? ([n. d.]). https://cloud.

google.com/learn/what-is-kubernetes last accesed 4/2024.

[4] Oguz Sunay Larry Peterson and Bruce Davie. 2022. Private 5G: A Systems

Approach. Systems Approach LLC.

https://doi.org/10.1109/GLOBECOM42002.2020.9322406
https://doi.org/10.1109/GLOBECOM42002.2020.9322406
https://cloud.google.com/learn/what-is-kubernetes
https://cloud.google.com/learn/what-is-kubernetes

	References

