G W N =

A Static Analysis Approach for Cross Language FiT
Bugs Detection

Li Shengyang, Kenta Ishiguro, Kenji Kono

Keio University, Japan

Modern software is often developed by multi-programming
languages (MPLs) to benefit their features and reuse exist-
ing libraries. A survey [1] on recent open-source projects
shows that over 50% of them are developed by more than 2
languages. This inevitably introduces MPL bugs, which stem
from fundamental mismatch of semantics of MPLs.

jelz = (+env)->FindClass (env, )

jmtd = (+env)->GetMethodID (env, jclz , s )
returnValue = (xenv)->CallIntMethod (env, obj, jmtd, argl, arg2);
//if ((+env) -> ExceptionOccurred(env)){return;}

doSomething (returnValue);

Listing 1. Omit exception handling

Lst. 1 shows a classic cross language call between Java
and C. In the code snippet, exception handling after calling
the Java code is omitted. In the Java world, uncaught excep-
tions can directly interrupt program execution, but in the C
world, there is no concept of exception and thus the program
continues to run, which may cause unstable behaviors and
bugs.

However, a large portion of MPL bugs can be detected if
the entire project is written in a single programming lan-
guage. In the above example, the Java compiler can detect
missing exceptions if the C portion is coded in Java. Our
observation among ten open-source MPL projects, FiT bugs
- a type of bug that is relatively simple and can be detected
without complex analysis — occupy a large portion.

Proposed Approach. We propose a scalable static anal-
ysis tool to find FiT bugs in projects developed by MPL.
Existing multi-language bug detection tools [2, 3] focus on
retrieving information from binaries to make static anal-
ysis possible, resulting in the loss of some semantics and
additional complexity. Our approach prevents losing cross-
language context by unifying simplified intermediate repre-
sentations(IRs) from MPL and linking isolated parts to make
a global view.

By using existing compilers and frameworks, single lan-
guage IR based function summaries and control flow graphs
can be easily obtained. As what we focus on is FiT bugs,
many obscure language features are not necessary. Only the
control flow graph, function calls, and some basic variable
assignments are retained in our simplified IR. Then, based on
cross-language customized linkers, the missing MPL context
is supplemented and comprehensive function summaries are
generated. Thus, the isolated MPL parts of one project have
been unified into interoperable function summaries repre-
sented by simplified IR. Subsequently, analysis passes will be

executed in the unified function summaries to detect various
patterns of MPL FiT bugs, and report possible bugs.

Compared to prior work, simplified IR in our approach
ensures scalability for multiple languages, as it is not com-
plex to parse a normal IR to simplified IR. Besides, all the
analysis is based on unified function summaries, which pro-
vides possibilities for extending analysis processes to deal
with different bug patterns. Moreover, the entire architec-
ture is component-based, allowing adding and removing on
demand, which is undoubtedly friendly for extension.

We have developed a prototype program focusing on Java
Native Interface (JNI) related bugs. Fig. 1 shows the work-
flow of our prototype. In the prototype program, LLVM and
Sootup are used to parse C/C++ code and Java code into sim-
plified IR based function summaries. Then, our JNI tailored
linker completes details and cross language context. Finally,
analysis passes are performed on the completed function
summaries.

Source Source
code of code of
ClC++ Java

1 , ]
LLVM IR Jimple IR
} 1 Pass C

Bug Report ‘

Simplified IR Simplified IR

| L

Simplfied IR Simplfied IR

Pass B
| B Pass A

Simplified IR based comprehensive

function summaries Analysis pass

Figure 1. Workflow

Preliminary Results To evaluate the feasibility of our
approach, we are currently conducting preliminary valida-
tion experiments. We use our prototype project found some
bug like miss exception handling, miss return value checking
successfully on a micro benchmark.

References

[1] Wen Li, Austin Marino, Haoran Yang, Na Meng, Li Li, and Haipeng
Cai. 2024. How are multilingual systems constructed: Characterizing
language use and selection in open-source multilingual software. ACM
Trans. on Software Engineering and Methodology 33, 3 (2024), 1-46.

[2] Jordan Samhi, Jun Gao, Nadia Daoudi, Pierre Graux, Henri Hoyez,
Xiaoyu Sun, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein.
2022. JuCify: a step towards Android code unification for enhanced
static analysis. In Proc. 44th Int. Conf. on Soft. Eng. 1232-1244.

[3] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong
Zhang. 2018. JN-SAF: Precise and Efficient NDK/JNI-aware Inter-
language Static Analysis Framework for Security Vetting of Android
Applications with Native Code. In Proc. of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. 1137-1150.



	References

