
A Checkpoint/Restore Mechanism with
Interoperability Among Distinctive WebAssembly Interpreters

Daigo Fujii
Future University Hakodate

Hokkaido, Japan
g2124038@fun.ac.jp

Katsuya Matsubara
Future University Hakodate

Hokkaido, Japan
matsu@fun.ac.jp

Yuki Nakata
SAKURA internet Inc.

Hokkaido, Japan
y-nakata@sakura.ad.jp

1 INTRODUCTION
WebAssembly (Wasm) has attracted attention because it acts
as a lightweight virtual machine that absorbs platform het-
erogeneity, which is essential, especially for edge-cloud col-
laboration. In fact, several Wasm runtimes focused on edge
computing, such as WasmEdge1 for edge servers and Wasm
Micro Runtime (WAMR)2 for edge devices, exist. Further-
more, we can see the trend from the fact that the technol-
ogy of VM migration, one of the essential features of cloud
computing infrastructure, is proposed by Wasm-based cloud
frameworks[1, 2].

Interpreters, known as the Wasm standard implementation,
have the advantages of a quick startup, a small footprint, and
sound portability. In contrast, the near-native performance of
Wasm has been backed by the optimization techniques such as
Just-in-TIme (JIT), Ahead-of-Time (AOT) compilation, and
custom instruction set substitution known as ’fast’ interpreters.
Unfortunately, these code optimizations can get in the way
of realizing the Wasm VM live migration, especially among
heterogeneous runtimes. This preliminary study focuses on a
Wasm VM checkpointing and restoring mechanism only for
the following three interpreters, such as WasmEdge, WAMR,
and Wasm33, excluding JIT and AOT implementations, to
challenge technical issues on VM state conversion among the
fast and standard interpreters.

2 INTEROPERABLE WASM VM STATE
WasmEdge adopts the standard interpreter that follows the
Wasm specification, although WAMR and Wasm3 can be
classified as fast interpreters. Most of the fast interpreters
have been introduced primarily to improve stack transactions
by transforming stack-based instructions to register-based
ones. So, the code transformation influences the program
counter, return values in the control stack, and the value stack
more than the frame stack, memory, and globals; the Wasm
core specification defines these classifications of VM state.
Therefore, the VM checkpointing and restoring requires sup-
plemental information to match them with each runtime’s
specific expressions.

1https://wasmedge.org/
2https://bytecodealliance.github.io/wamr.dev/
3https://github.com/wasm3/wasm3

Program Counter and Control Stack. The program counter
is the instruction pointer of the next instruction to be exe-
cuted, and the control stack manages the control flow as the
instruction pointer that can be jumped to. The instruction
pointers are absolute addresses, they can have different ad-
dresses on different machines and processes. Therefore, We
implemented process that convert the instruction pointer to a
relative address of Wasm bytecode. The instruction pointer in
the standard interpreter points to Wasm code, enabling easy
conversion. In the fast interpreter, it points to custom code,
making conversion difficult. To make the conversion possible,
we mapped the equivalent execution points of Wasm bytecode
and custom bytecode. The mapping between Wasm code and
custom code does not change the order of the code between
Wasm code and custom code because the code conversion
process of the high-speed interpreter converts Wasm code
one instruction at a time. Thus, it is possible to map between
execution points with equivalent program states.

Value Stack. The value stack has a different memory layout
at each runtime and does not have type infomation of value
stack. For example, in WAMR and Wasm3, all values inside
the value stack are laid out, while WasmEdge is 0-padded
in 128-bit units. Thus, it is difficult to convert value stacks
of different memory layouts to each other. We achieved to
convert different value stacks to each other by introducing a
data structure that manages type infomation of value stack.
Also, the value stack of the fast interpreter differs from that
of the standard interpreter between equivalent code positions.
Therefore, it is necessary to convert the value stack of the
fast interpreter to the contents of the other. To get the value
stack of the standard interpreter, traverse the Wasm code of
the function at checkpointing. Since getting the value stack
does not recalculate the value, but only collects the addresses
where the precomputed value is stored, no loops or backward
jumps occur during traversal, and the restoration can be done
with little overhead.

REFERENCES
[1] Manuel Nieke, Lennart Almstedt, et al. 2021. Edgedancer: Secure Mo-

bile WebAssembly Services on the Edge. In Proc. of the 4th Int. Work-
shop on Edge Systems, Analytics and Networking (EdgeSys). 13–18.

[2] Mohammed Nurul-Hoque and Khaled A. Harras. 2021. Nomad: Cross-
Platform Computational Offloading and Migration in Femtoclouds Using
WebAssembly. In Proc. of the 2021 IEEE Int. Conf. on Cloud Engineer-
ing (IC2E). 168–178.

https://wasmedge.org/
https://bytecodealliance.github.io/wamr.dev/
https://github.com/wasm3/wasm3

	1 Introduction
	2 Interoperable Wasm VM State
	References

