
Secure and Efficient Monitoring of Confidential VMs
using eBPF

Kanta Uesugi
Kyushu Institute of Technology
uesugi@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@csn.kyutech.ac.jp

1 Background
In clouds, there is a risk of insiders eavesdropping on sensi-
tive information in users’ virtual machines (VMs). To counter-
act this risk, recent clouds provide confidential VMs, which
are protected from insiders by trusted execution environ-
ments (TEE) such as AMD SEV. Since confidential VMs can-
not prevent intrusion into VMs, intrusion detection systems
(IDS) are still required. However, IDS cannot monitor confi-
dential VMs from the outside using VM introspection (VMI)
because the memory of VMs is protected.

SEVmonitor [1] enables IDS to monitor confidential VMs
by communicating with an agent securely running inside
the VMs. IDS running in a dedicated confidential VM can
securely obtain requested memory data and analyze kernel
data using VMI. The drawback of SEVmonitor is that moni-
toring performance is largely degraded due to the commu-
nication overhead. Particularly, when IDS traverses kernel
data structures with pointers, it needs communication to ob-
tain memory data one by one. According to our experiment,
it took 27x longer to obtain information on all processes,
compared with traditional VMI.

2 eBPFmonitor
We propose eBPFmonitor, which enables IDS to efficiently
monitor confidential VMs by reading ahead kernel data using
eBPF inside VMs. As shown in Figure 1, eBPFmonitor isolates
the target system using a container created in a confidential
VM and securely runs an agent outside it. When IDS needs to
access kernel data structures with pointers, it injects custom
eBPF programs into the kernel of the target VM via the agent.
For example, an injected eBPF program traverses the list
of processes, obtains necessary memory data, and returns
it to the IDS in a batch. The injected eBPF programs can
be safely executed because the verifier can detect illegal
instructions and infinite loops. As such, eBPFmonitor can
reduce communication overhead between IDS and the agent
and improve monitoring performance.
eBPFmonitor loads eBPF programs into the target VM

in advance when IDS starts monitoring the VM. When the
IDS needs specific kernel data, the IDS sends a request to
the agent. The agent executes one of the loaded eBPF pro-
grams, whereas the eBPF program collects the addresses of
the memory where the kernel data is stored. In parallel, the

target VM

agent eBPF
program

OS

VMIDS

IDS VM

request

memory data

load load

execute
memory address

target system

Figure 1: The system architecture of eBPFmonitor

agent obtains the memory data corresponding to the col-
lected addresses from the kernel and sends it back to the
IDS sequentially. To protect the memory data, the kernel en-
crypts it so that only the IDS can decrypt it. The IDS stores
the received memory data in the cache and uses it when
necessary.
We have implemented eBPFmonitor in Linux and KVM

using BPF CO-RE. BPF CO-RE enables developed eBPF pro-
grams to run in different kernel versions. Specifically, BPF
CO-RE compiles eBPF programs including type information
and adjusts them to the kernel version of the target VM at
load time. However, BPF CO-RE cannot handle kernel global
variables, e.g., the list head of the kernel modules. eBPFmoni-
tor makes global variables available by converting them from
symbol names to kernel addresses at runtime.
We conducted experiments to show the effectiveness of

eBPFmonitor. We measured the time taken to traverse the
list of processes, the list of kernel modules, and the hash
table of TCP sockets in a confidential VM. For comparison,
we measured the time in SEVmonitor, which communicated
between IDS and the agent whenever the IDS needed kernel
data. Also, we applied traditional VMI to a non-confidential
VM. As a result, eBPFmonitor was 43% and 36% faster than
SEVmonitor for processes and kernel modules, respectively.
However, it was 9.6% slower for TCP sockets due to the
overhead of the eBPF program. Compared with VMI, it was
still 4.6-15.4x slower.

References
[1] T. Nono and K. Kourai. 2022. Secure Monitoring of Virtual Machines

Protected by AMD SEV in Public Clouds. SAES 2022.


	1 Background
	2 eBPFmonitor
	References

