
Hybrid Transactional Index with Scalable Phantom Avoidance
Yutaro Bessho

NTT
Japan

Hideyuki Kawashima
Keio University

Japan

𝐿𝑢

𝐿𝑝

Phantom Avoidance
w/ Precision Locking

Hash Table

B+-tree

Lookups

Inserts

Deletes

Predicate
Scans

Sync
Manager

Propagate

Ins/Del

Figure 1: Overview of Grif-
fin.

𝐿𝑢

𝐿𝑝

B+-tree

Sync
Manager

Propag
ate

Ins/De
l

acquire

Worker
Threads

release

Figure 2: Precision Lock-
ing in the original Griffin.

Worker
Threads

𝐿𝑢

acquire
release

𝐿𝑝

B+-tree
Propagate
Ins/Del

Per-thread segments

Figure 3: Proposed de-
sign (Griffin-PPL).

14 16 32 64
of Threads

0

1

2

3

4

Co
m

m
its

 p
er

 S
ec

on
d

1e6
Griffin-original
Griffin-PPL
B+-tree

Figure 4: Microbench-
mark throughput.

1 Introduction
Griffin [3] (Fig. 1) is a hybrid transactional index structure with a
hash table and B+-tree, each of which manages the key set of a table.
The hash table processes single-key operations (lookups, inserts
and deletes), while the B+-tree processes predicate scans. Inserts
and deletes to the hash table are propagated to the B+-tree by an
asynchronous thread, sync manager. The key benefit of Griffin is
that it processes single-key operations in 𝑂 (1), while a B+-tree
does in 𝑂 (log𝑁) (𝑁 : table size). To achieve serializability, Griffin
avoids phantoms with precision locking [1]. [3] shows that Griffin
outperforms a B+-tree in workloads with few inserts and deletes.

2 Problem
In workloads with more inserts or deletes, precision locking causes
tremendous overhead for Griffin.

Overview of precision locking. Inserts, deletes, and predicate
scans are guarded with a lock. A lock is acquired before accessing
data and released after the transaction terminates. Locks are man-
aged in two lists: one for inserts/deletes (𝐿𝑢), and one for predicate
scans (𝐿𝑝). A pair of insert/delete and predicate scan that conflict
cannot hold their locks at the same time; before acquiring a lock,
an insert/delete searches 𝐿𝑝 for a conflict, and aborts on detecting
one. 1 A predicate scan searches 𝐿𝑢 and aborts on any conflict.

Bloating lock lists. In Griffin, high loads of inserts/deletes can
cause 𝐿𝑢 and 𝐿𝑝 to grow indefinitely, because: (1) Locks in 𝐿𝑢 are
costlier to release than to acquire. For correctness reasons, before
releasing a lock in 𝐿𝑢 , the insert/delete must be propagated to the
B+-tree, which involves an 𝑂 (log𝑁) access. The cost of acquiring
the lock is significantly smaller (𝑂 (1)). (2)While multiple threads
acquire locks, only one thread releases them. As shown in Fig. 2, lock
acquisition is done by worker threads, i.e., threads that process
operations. Lock release is done by sync manager, the single thread
that also propagates inserts/deletes. (3) New locks can be acquired
without limit. Sync manager does not throttle worker threads in any

1Although the mutual exclusion of precision locking can be achieved by blocking the
issuer of the lock request, this work and [3] assume an abort of the issuer.

way. (4) The bloating of 𝐿𝑢 can lead 𝐿𝑝 to also bloat.When there are
many predicate scans as well, 𝐿𝑝 can bloat because sync manager is
busy releasing locks in 𝐿𝑢 . Since every insert, delete, predicate scan
searches the whole 𝐿𝑢 or 𝐿𝑝 on acquiring its lock, performance
significantly degrades when they grow.

3 Proposal
We propose Griffin-PPL (Parallel Precision Locking) (Fig. 3). Most no-
tably, it removes syncmanager; its jobs of propagating inserts/deletes
and releasing locks are instead processed by all worker threads in
parallel. For parallelization, 𝐿𝑢 and 𝐿𝑝 are split into per-worker-
thread segments. An insert/delete, or predicate scan acquires its
lock in its per-thread segment of 𝐿𝑢 or 𝐿𝑝 , respectively, and it
searches all segments of 𝐿𝑝 and 𝐿𝑢 , respectively, for conflicting
locks. Every time a worker thread acquires a set number of locks in
its segment of 𝐿𝑢 or 𝐿𝑝 , it tries to release as many locks as possible
in the segment. Of the aforementioned reasons that 𝐿𝑢 and 𝐿𝑝 can
bloat, Griffin-PPL addresses (2), (3), and (4). (2) Releasing locks is
parallelized by worker threads. (3) When worker threads release
locks and propagate inserts/deletes, they cannot process operations,
i.e., lock acquisition is throttled. (4) Releasing locks in 𝐿𝑝 is removed
from the critical path, i.e., sync manager. (1) is not addressed be-
cause B+-tree updates remain 𝑂 (log𝑁), but some batch-update
schemes might be exploited (future work). Fig. 4 shows the transac-
tion throughput of a B+-tree, original Griffin, and Griffin-PPL in an
insert-heavy (50% inserts, 50% predicate scans) microbenchmark. 2
Griffin-PPL performs the best while the original Griffin collapses
due to the bloating lock lists.

References
[1] J. R. Jordan et al. 1981. Precision Locks. In SIGMOD Conf. 143–147.
[2] Per-Åke Larson et al. 2011. High-Performance Concurrency Control Mechanisms

for Main-Memory Databases. Proc. VLDB Endow. (2011).
[3] Sho Nakazono et al. 2024. Griffin: Fast Transactional Database Index with Hash

and B+-tree. arXiv:2407.13294 Accepted for presentation at IEEE eScience 2024.

2As with [3], every insert or predicate scan is executed as a transaction, all data fits
in memory, and no table or logging is involved. B+-tree avoids phantoms through
repeating scans at commit time [2].

https://arxiv.org/abs/2407.13294

	1 Introduction
	2 Problem
	3 Proposal
	References

