
"Permission Denied!" Why?
Hiroki Nakajima, Kenta Ishiguro, Kenji Kono

Keio University

Motivation. Modern operating systems enforce complex

access control over computing resources such as files. For

example, file access control consists of two layers: capabili-

ties and traditional rwx control. Even for experienced users,

it is not always easy to comprehend the access control rules.

When manipulating files and directories, the user often en-

counters a notorious error message: “permission denied”. It

is often hard to grasp the root cause of the denied permission,

although the user with moderate familiarity with the access

control should be able to understand why.

The following is an intricate example that needs a deep

understanding of Linux file systems.

Taro% ls -l /tmp
lrwxrwxrwx Taro /tmp/lnk -> XXX
Taro% cat /tmp/lnk
I am Taro!
Taro% sudo cat /tmp/lnk
cat: /tmp/lnk: Permission denied

Without the intimate knowledge of Linux file access per-

missions, the user cannot understand the root cause of this

“permission denied”. In this example, the file accessible in

the user privilege can not be accessed in the root privilege.

Goal. The goal of this work is to offer clues to the root

causes of denied permissions. Error messages generated by

operating systems can be ambiguous and provide insufficient

information to diagnose the errors. In Linux, the number

of error messages (e.g., errno) is 150 at most, which is too

few to explain the root cause of each error. The functions

in fs/namei.c have 15 statements to return the same er-

rno (EACCES, so-called “permission denied”), each of which

corresponds to a different root cause upon opening a file.

Windows has more than 10,000 error codes, but not enough

to ensure one-to-one correspondence between an error code

and its root cause.

Approach. This poster proposes Permod, a compiler ex-

tension that augments the Linux source code to generate

rich logging information, which helps the users understand

the root cause of “permission denied”. The fundamental ap-

proach is as follows. Permod inserts a logging statement that

generates x != 0 for statement like if(x) return -EACCES;.
Beginning with a statement that returns errno, all the basic

blocks are traversed backward up to a syscall entry point.

During this traversal, all the conditions that reach the return

statement are piled up. Finally, Permod inserts logging code

that pretty-prints the piled-up conditions. Fig. 1 overviews

Permod.

Preliminary Results. Permod has been implemented

as a LLVM pass with LLVM-17.0.6 and Coccinelle [2]. For

Figure 1. Overview of Permod

the example described above, Permod generates the log as

follows:

sysctl_protected_symlinks != 0 // enabled
dir_mode == S_ISVTX // 'sticky bit' set

The first line indicates fs.protected_symlinks is enabled

in the Linux sysctl, and the second line represents the sticky

bit of the directory is set (dir_mode is S_ISVTX). When the

protected_symlinks is enabled, symbolic links in a sticky

world-wide writable directory, such as /tmp, are protected
from being followed by anyone but the owner. Therefore the

root cannot access the symbolic link owned by Taro.
Related Work. There are several studies on logging im-

provement in software. Li et al. [1] proposed a deep-learning

approach to suggest better logging locations. LogEnhancer [4]

and SecLog [3] are static analysis tools to enhance log mes-

sages. They focus on the places where log statements already

exist or must exist.

Summary & Future Work. This paper presents Permod,
a compiler extension for OS-generated error messages by

providing rich logging information. We plan to measure

the effectiveness of the information and determine better

granularity in the future.

References
[1] Zhenhao Li, Tse-Hsun (peter) Chen, and Weiyi Shang. 2021. Where

shall we log? studying and suggesting logging locations in code blocks.

In Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE ’20). 361–372.

[2] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller.

2008. Documenting and automating collateral evolutions in linux device

drivers. In Proceedings of the ACM SIGOPS/EuroSys European Conference
on Computer Systems 2008 (Eurosys ’08). 247–260.

[3] Bingyu Shen, Tianyi Shan, and Yuanyuan Zhou. 2023. Improving

Logging to Reduce Permission {Over-Granting} Mistakes. In USENIX
Security Symposium (USENIX Security 23). 409–426.

[4] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Sav-

age. 2011. Improving software diagnosability via log enhancement. In

Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’11). 3–14.


	References

