
Toward Efficient Fuzzing for Container Escape Vulnerability
Detection

Seiga Ueno
The University of Tokyo

Tokyo, Japan

Takahiro Shinagawa
The University of Tokyo

Tokyo, Japan

EXTENDED ABSTRACT
In recent years, container technology has gained popularity in
modern cloud and enterprise computing environments. Containers
are more resource-efficient and lightweight than virtual machines,
making them ideal for serverless computing, microservices, and
other cloud-native applications. However, containers are process-
level isolated environments that share the single OS kernel and
container runtime, leading to container escape vulnerabilities when
there are flaws in their isolation mechanisms [4]. These vulner-
abilities allow attackers to gain unauthorized access to the host
system or other container resources, leading to data theft, system
compromise, and lateral movement within the network. Therefore,
identifying andmitigating container escape vulnerabilities is crucial
for maintaining containerized environment security.

Fuzzing is a software testing technique that involves automat-
ically generating and inputting random data into a program to
uncover security vulnerabilities and bugs. Compared to manual
testing and static analysis, fuzzing can explore numerous execution
paths and detect vulnerabilities that are often missed by other
methods. However, leveraging the fuzzing technique to find con-
tainer escape vulnerabilities faces the following challenges. (1)
Extensive exploration space: The OS kernel’s codebase is extensive
and complex, encompassing a wide range of functionalities and
modules. However, container-related code constitutes only a small
portion of the OS kernel, making random input targeting inefficient
for discovering container-specific vulnerabilities. (2) Detecting
non-crashing vulnerabilities: Fuzzing typically finds bugs that
trigger system crashes, but container escape does not necessarily
cause crashes, making their detection challenging.

Syzkaller is a popular Linux kernel fuzzer that uses system call
sequences to identify vulnerabilities [2]. However, Syzkaller is
not specifically designed to target container-specific vulnerabili-
ties, making it less effective for finding container escape issues.
Torpedo [3] is a specialized fuzzer designed to find container
vulnerabilities by extending Syzkaller’s functionality. However, Tor-
pedo primarily focuses on resource-limit bypassing vulnerabilities,
which allow containers to exceed their allocated CPU usage limits,
and does not address container escape vulnerabilities in general.
Paced [1] is a real-time system for detecting container escape
attacks by analyzing cross-namespace events with a provenance-
based approach. However, Paced is based on provenance and
has less kernel code coverage than Fuzzing. CPEED [5] performs
integrity measurements in a hardware-isolated security domain
to detect container escape. However, CPEED requires additional
hardware and runtime overhead.

We propose a novel fuzzing framework to efficiently discover
container escape vulnerabilities. To address the challenge of the

vast kernel space, we introduce directed fuzzing towards fuzzing-
related kernel code fragments. For instance, container-enabling
technologies include namespaces and cgroups, with namespaces
encompassing several sub components. We identify container-
specific code in the source based on their component names and
prioritize seeds that focus on executing this code intensively,
thereby allowing concentrated testing of container-related code. To
address the challenge of non-crash vulnerabilities, we introduce a
dedicated container escape detector. For example, to detect incorrect
conditions where an application in a container has access to
unauthorized host resources, such as files, we check the capability
of the application in the container, such as file descriptors, in the
host kernel at an appropriate timing. This allows for the detection
of conditions where the kernel does not crash but the in-container
application is actually silently escaping, which is undetectable with
conventional sanitizers.

As a first step toward detecting container escapes in general,
we aim to detect mount namespace escapes. First, we identify
code sections that handle kernel data structures related to file
descriptors in order to perform directed fuzzing of kernel code that
handles mounted namespaces. Specifically, we identify functions
that handle struct file structures and perform directed fuzzing
on them so that they can be intensively tested. In addition, to detect
vulnerabilities that allow mount namespace escapes, we obtain a
list of i-nodes of files accessible by the container and periodically
scan file descriptors that are open by the container. This allows
the detection of file descriptors that have opened files to which the
container should not have access rights.

We are in the process of implementing this fuzzing framework
by extending Syzkaller. We used Docker on Linux as the target for
fuzzing, with fuzzing system calls issued from inside the container.
AFL is used for the Fuzzer. Currently, our first goal is to detect
CVE-2024-21626. Then we will consider directed fuzzing methods
and container escape detection methods for other namespaces such
as PID, Network, user, IPC, and UTS.

References
[1] Mashal Abbas et al. 2022. PACED: Provenance-based Automated Container Escape

Detection. In Proc. 2022 IEEE International Conference on Cloud Engineering (IC2E).
261–272. https://doi.org/10.1109/IC2E55432.2022.00035

[2] Google. 2016. syzkaller - kernel fuzzer. https://github.com/google/syzkaller.
[3] Kenton McDonough et al. 2022. Torpedo: A Fuzzing Framework for Discovering

Adversarial ContainerWorkloads. In Proc. 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 402–414. https://doi.org/
10.1109/DSN53405.2022.00048

[4] MITRE Corporation. 2024. CVE-2024-21626: Runc Container Breakout Through
Process.Cwd Trickery And Leaked Fds.

[5] Mengting Zhou et al. 2023. Container Privilege Escalation and Escape Detection
Method Based on Security-First Architecture. In Proc. 2023 IEEE International
Conference on High Performance Computing Communications, Data Science
Systems, Smart City Dependability in Sensor, Cloud Big Data Systems Application
(HPCC/DSS/SmartCity/DependSys). 490–498. https://doi.org/10.1109/HPCC-DSS-
SmartCity-DependSys60770.2023.00073

https://doi.org/10.1109/IC2E55432.2022.00035
https://github.com/google/syzkaller
https://doi.org/10.1109/DSN53405.2022.00048
https://doi.org/10.1109/DSN53405.2022.00048
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys60770.2023.00073
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys60770.2023.00073

	EXTENDED ABSTRACT
	References

