
Design of SR-IOV Driver to Mitigate Performance
Degradation for Lightweight Hypervisor

Keisuke Iida∗
The University of Tokyo

Takaaki Fukai
National Institute of Advanced Industrial Science and

Technology

Takahiro Hirofuchi
National Institute of Advanced Industrial Science and

Technology

Takeshi Matsuya
Keio University

Lightweight hypervisor (LH) enables to achieve OS indepen-
dent function by virtualization while minimize the code size
of its hypervisor and performance degradation caused by
virtualization. LH is designed to keep Trusted Computed
Base (TCB) of whole system and virtualization overhead low
as possible by eliminating the complex tasks of hypervisor
such as vCPU scheduling, device virtualization, interrupt
emulation.
In LH, there are some situations where the hypervisor

wants to control the device. For example, to migrate guest,
LH wants to use network card [1]. However, it is difficult
because all devices assigned directly to the guest.
Single-Root I/O Virtualization (SR-IOV) is a good way

to achieve this without device virtualization by software.
SR-IOV is hardware virtualization feature which partition
physical PCI function (PF) into independent lightweight PCI
functions (VF). In SR-IOV architecture, VF driver in the guest
OS is allowed to do data processing such as packet process-
ing, but hardware configuration must be delegated to SR-IOV
PF driver in the hypervisor from VF driver. To notify configu-
ration delegation from VF to PF, SR-IOV use MSI-X interrupt.

Unfortunately, the dependency of the SR-IOV on the inter-
rupt results in a performance overhead. CPU that supports
hardware-assisted virtualization provide interrupt trapmech-
anisms that enable hypervisor to detect the interrupts. How-
ever, these mechanisms typically do not support selective
trap, meaning that when the mechanism is enabled, all of the
interrupts are trapped and the hypervisor is involved. There-
fore, the PF-VF communication that relies on the interrupts
in the hypervisor having to intercept all interrupts, which is
known to cause significant performance degradation under
I/O-intensive workloads. [2].
Posted Interrupt (PI) technology allows delivering speci-

fied interrupts to guests directly. However, this technology
is a complex hardware mechanism that not only supports
virtualization of CPU, but also supports virtualization of
interrupt controllers and IOMMU, and hardware vendors’
∗This work was carried out while author was at National Institute of Ad-
vanced Industrial Science and Technology.

support for this technology varies. In addition, the imple-
mentation of the hypervisor for controlling posted interrupt
mechanism tends to be complex due to the need to control
these hardware components.

We propose interrupt-less SR-IOV driver, that detects pro-
cessing requests from VF to the PF driver without using in-
terrupts. Our proposed design allows the LH to pass through
all interrupts to the guest, so be able to eliminate VM-Exits
caused by external interrupts. It expects to mitigate perfor-
mance degradation by SR-IOV driver. We noted that all of
notifications to the PF by interrupts are not latency sen-
sitive, therefore we use the monitor thread to process for
new notifications asynchronously. This thread is executed
when VM-Exit occurs for other reasons such as for handling
sensitive instructions. Therefore, this avoids additional VM-
exits for the PF driver. The advantage of this design is the
simplicity of implementation and lower CPU consumption.

We implemented and evaluated interrupt-less SR-IOV Dri-
ver for 10GbE SR-IOV NIC (Intel X710) on BitVisor [3] based
hypervisor. Compared to hypervisor with a classical SR-IOV
driver which intercepts every interrupts, latency was im-
proved by 8.5% and throughput was improved by 11.2% when
the guest CPU is fully loaded.

Acknowledgments
This work was supported by JST, CREST Grant Number
JPMJCR22M3, Japan.

References
[1] Takaaki Fukai et al. 2021. Live Migration in Bare-Metal Clouds. IEEE

Transactions on Cloud Computing 9, 1 (2021), 226–239.
[2] Abel Gordon et al. 2012. ELI: bare-metal performance for I/O virtualiza-

tion. In Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2012, London, UK, March 3-7, 2012, Tim Harris and Michael L. Scott
(Eds.). ACM, 411–422.

[3] Takahiro Shinagawa et al. 2009. BitVisor: A Thin Hypervisor for Enforc-
ing i/o Device Security. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE ’09).
Association for Computing Machinery, 121–130.


	Acknowledgments
	References

