
Toward LLM-based Large-scale C-to-Rust Code Translation
Momoko Shiraishi

The University of Tokyo
Tokyo, Japan

Takahiro Shinagawa
The University of Tokyo

Tokyo, Japan

Extended Abstract
While C language has been widely used in existing applications, C
programs often suffer from memory safety vulnerabilities. In recent
years, Rust has been gaining increasing attention as a memory-safe
language suitable for system software, triggering a motivation to
migrate existing C code to Rust. There are two main approaches to
the automatic conversion of C code to Rust. The first is a rule-based
method, which relies on handcrafted predefined transformation
rules [1, 3]. The second is an LLM-based conversion method, which
utilizes Large Language Models (LLM) to perform the translation [2,
5]. While rule-based approaches can transform large programs
relatively accurately, LLM-based approaches are known to produce
less unsafe blocks andmore idiomatic expressions [4], and therefore,
LLMs have the promissing potential to produce better code more
easily.

Unfortunately, LLM-based conversion is still difficult to convert
large codes. For example, several studies indicate that LLM-based
approaches can only convert less than 100 lines of C programs into
Rust code that can be compiled [2, 5]. A study analyzing conver-
sion bugs with LLMs showed that 50% of translation bugs were
due to compilation errors in GPT-4 for C to Rust conversion, and
that compilation errors were also a major factor in unsuccessful
conversions between other programming languages [4]. One rea-
son for the compilation errors is obviously the difference in syntax
between C and Rust, but another reason is that LLM has a negative
correlation between prompt length and task performance, leading
to poor performance in large code translation. Therefore, it is worth
considering breaking the original C code into appropriate smaller
units for sequential conversion in order to reduce translation bugs.
However, it is an open question how to partition the source C code
and what prompts to use to improve the compilation success rate
of the converted Rust code.

We propose an LLM-based C-to-Rust conversion scheme that
leverages context-supplement prompts between split conversion to
improve compilation success rates in large codes. Our scheme first
splits the original C program into appropriate sizes for each LLM,
since too large code degrades LLM performance and too small code
loses information from other code. Our scheme then pre-parses
the original C program and adds a small database representing its
structure to the prompt as supplemental information to compensate
for the context lost between split conversions. For example, this
database stores sorted function names and function call graphs in
JSON format. This database also stores information about the cor-
respondence between the original C code fragments and converted
Rust code fragments, as well as their data types. Furthermore, our
scheme also analyzes dependencies between functions and files
in advance, and performs transformations in the order in which
functions are called. The addition of such compressed and local-
ized supplementary context information to the prompts facilitates
accurate split conversion with short prompts.

Once the code has been converted to Rust, we request the LLM
to make corrections until the Rust code successfully compiles. Each
code fragment is separately compiled and the referenced informa-
tion is also included in the prompt of this repair process. Moreover,
we ask the LLM to provide corrections in logical units that can be
parsed, rather than on a file-by-file basis. In this way, we aim to au-
tomate the correction of conversion bugs and improve conversion
accuracy through feedback for the next conversion.

In summary, we are trying to answer the following questions.
RQ1 Does dividing the code into smaller parts increase the compile

success rate?
RQ2 Does summarizing the referencing data (rather than directly

showing the referencing parts (files) to the LLM) affect the
compile success rate?

RQ3 What is the appropriate scope for corrections by an LLM to
avoid compilation errors? Should it be at the file level or the
logical unit level?

We target 10 C programs, with lines of code ranging from 154 to
2,410. We tested them using Claude Anthropic (Sonnet 3.5) so far
and the code up to line 2,410 has successfully compiled. Then, we
observed that (1) parsing the original C code and strictly convert-
ing it from the referenced elements, (2) summarizing and including
the information of referenced elements (such as called function
signatures and definitions of used data types) in the prompt during
both the conversion and compile repair phases, and (3) keeping a
record of the compilation correction process, improve the compila-
tion success rate. We plan to test with other LLMs such as GPT-4
and Gemini Pro. Additionally, we plan to analyze the equivalence
between the original C code and the converted Rust code. The equiv-
alence in the conversion is determined by comparing the results
for the testcases of the programs.

References
[1] Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf. 2021. Translating

C to safer Rust. Proceedings of the ACM on Programming Languages 5, OOPSLA
(2021), 1–29.

[2] Hasan Ferit Eniser, Hanliang Zhang, Cristina David, MengWang, Brandon Paulsen,
Joey Dodds, and Daniel Kroening. 2024. Towards Translating Real-World Code
with LLMs: A Study of Translating to Rust. arXiv preprint arXiv:2405.11514 (2024).

[3] Immunant. 2022. C2Rust. https://github.com/immunant/c2rust.
[4] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lam-

bert Pouguem Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha,
and Reyhaneh Jabbarvand. 2024. Lost in translation: A study of bugs introduced
by large language models while translating code. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. 1–13.

[5] Aidan ZH Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel
Kroening. 2024. Vert: Verified equivalent rust transpilation with few-shot learning.
arXiv preprint arXiv:2404.18852 (2024).

https://github.com/immunant/c2rust

	References

