Low Latency Kernel Monitoring with XDP in Large
Distributed Environments

Yuki Maruyama, Tomohiro Kano, Kenta Ishiguro, Kenji Kono
Keio University

Background. In large distributed environments, multiple
servers run tasks in parallel while communicating with each
other. To maintain health and performance of distributed
systems, a monitoring service collects various metrics from
the entire infrastructure, and is responsible for launching
maintenance jobs such as load balancing and failure recov-
ery. A monitor sends monitoring messages to each server,
and the recipient server replies to the monitor with various
metrics such as CPU load. The monitoring messages must be
collected in a timely fashion; if the collected metrics are out
of date, the monitor misjudges the system status and makes
inappropriate decisions for the maintenance.

Problem. It is widely recognised that monitoring mes-
sages are often delayed due to overloading of the servers.
In traditional monitoring systems such as NetData [1] and
Prometheus [2], monitoring latency increases by more than
10X when CPU is saturated [5]. Amazon DynamoDB expe-
rienced a major outage caused by delays monitoring mes-
sages [3].

Goal. The goal of this research is to provide a lightweight,
low-latency monitoring framework that can prevent delays
in monitoring messages. In this framework, monitoring la-
tency is unlikely to be affected by servers’ loads. The frame-
work can run with traditional Ethernet NICs and is not in-
trusive to existing operating system kernels.

user space

—— packet flow
. . e memo
metrics acquisition kernel space ry
user-defined metrics
metrics collector

send message

monitor ] NIC
reply message

Figure 1. Overview of the proposed method

Approach. The key features of our framework are as fol-
lows: In-kernel Monitoring: Metrics are collected inside the
kernel. This design leads to a lightweight design because the
collection does not involve user/kernel context switches.
SoftIRQ Layer: Metric collection is conducted in the soft IRQ
layer. This layer is invoked immediately after hardware in-
terrupt handling, and executed in the interrupt context. This
design minimizes the latency involved in packet handling.
Generality: All the kernel metrics procfs provides can be
collected. Users can install a small piece of code inside the

kernel that collects and manipulates kernel metrics. The
safety of the user-defined code is validated before execution.

Fig. 1 shows the overall design of our framework. A mon-
itoring message is delivered to the user-defined code that
collects kernel metrics. The latency is minimized since this
code is executed in the soft IRQ layer, and less likely to be
affected by the server’s load. Metric collection can be done
via the procf's interface. No synchronization is necessary
because the monitor only reads the metrics. Our framework
has been implemented by slightly extending XDP [4], in-
kernel packet processing in Linux. To allow XDP code to
access to kernel metrics, a new helper function has been
added, which reads kernel metrics through procfs interface.

B e ——

90% Hff----—---———-——-————-—-

percentile

—— proposed
conventional

80% T T T -
0.0 2.5 5.0 7.5 10.0

latency [ms]

Figure 2. Monitoring latency (CDF)

Experiments. We conducted an experiment to measure
the monitoring latency of RocksDB, using YCSB write-only
workloads.! Fig. 2 shows CDF of the monitoring latency. The
50th, 90th, and 99th percentile are 28.0 us, 31.0 us, and 34.0 ys
in the proposed approach, whereas those of the conventional
approach are 43.0 us, 424 us, and 8.20 ms, respectively.

References

[1] [n.d.]. Netdata - Monitor everything in real time for free with Netdata.
https://www.netdata.cloud/. Accessed: July, 2024.

[2] [n.d.]. Prometheus - Monitoring shstem & time series database. https:
//prometheus.io/. Accessed: July, 2024.

[3] [n.d.]. Summary of the Amazon DynamoDB Service Disruption and
Related Impacts in the US-East Region. https://aws.amazon.com/jp/
message/5467D2/. Accessed: July, 2024.

[4] Heiland-Jorgensen et al. 2018. The eXpress data path: fast pro-
grammable packet processing in the operating system kernel. In Proc.
of the 14th Int. CONEXT ’18.

[5] Wang Zhe et al. 2022. Zero Overhead Monitoring for Cloud-native
Infrastructure using RDMA. In USENIX ATC 22.

Monitoring and monitored machines have a 3.80GHz-6core Intel Xeon
E-2276G processor with 32 GB of RAM and Intel X540 NIC.


https://www.netdata.cloud/
https://prometheus.io/
https://prometheus.io/
https://aws.amazon.com/jp/message/5467D2/
https://aws.amazon.com/jp/message/5467D2/

	References

