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1 Introduction

Embedded systems are becoming increasingly sophisticated and
multifunctional. In particular, advanced and complex in-vehicle sys-
tems now consist not only of bare-metal applications that perform
single operations, but also a variety of software, including RTOSs,
GPOSs, and their applications. As software in embedded systems in-
creases, the number of hardware components also grows, including
embedded devices, peripheral devices, and the wiring that connects
them. This leads to problems such as increased weight, space con-
straints inside the product, and complexity of hardware design. On
the other hand, multi-core processors are also becoming widely
used in embedded devices. However, many existing embedded soft-
ware are designed with single-core and cannot take full advantage
of multi-core. Additionally, porting these software to use multi-core
efficiently is difficult. We solve these problems by running multi-
ple embedded software, which have been running separately, on a
single hardware equipped with a multi-core processor.

Several problems exist when porting embedded software and
running multiple systems on the same hardware. One is that embed-
ded software programmed to depend on specific cores for operation
on a single core does not anticipate multi-core, leading to increased
porting complexity when aggregating them. In addition, although
virtualization methods enable multiple OSs to run through hard-
ware emulation, the hurdle to guaranteeing real-time performance
is high for embedded systems. Therefore, we propose Homare, a
platform that enables the aggregation of embedded software focus-
ing on improving portability and ensuring real-time performance.

2 Approach

Virtualization technology is used to run multiple systems on a
single hardware. For embedded systems, existing hypervisors like
Bao[1] and SPUMONE][2] use lightweight virtualization layers and
static resource partitioning to enable lightweight execution. Other
systems such as LynxSecure, QNX Hypervisor, and eMCOS Hyper-
visor adopt similar methods to meet the requirements of embedded
systems. However, existing virtualization is too complex to reduce
code size and overhead in portability and real-time performance.
Homare combines LPAR (Logical Partition) with minimal para-
virtualization to achieve the aggregation shown in Figure 1. Es-
sentially, using the LPAR, Homare allocates resources and boots
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Figure 1: The overview of Homare.

the guest OS, allowing direct control of exclusive resources to en-
sure real-time performance. Only certain core-dependent processes
and memory virtualization, device sharing are managed by para-
virtualization through API calls. The functions that enable these
configurations include APIs and a library of stubs that call the APIs,
boot emulation, and hardware resource allocation management.

3 Result

We implemented Homare on a Raspberry Pi 3 to aggregate bare-
metal applications and four RTOSs: FreeRTOS, TOPPERS/ASP3,
TOPPERS/FMP, and T-Kernel 2.0. Homare assigns and activates
multiple cores for each RTOS, allowing guest operating systems to
run independently on any core.

The evaluation focused on two essential requirements for ag-
gregation: portability and real-time performance. The number of
source code modifications required during the aggregation ranged
from 4 to 19. These modifications can be extracted mechanically, so
modification of the guest OS is easy enough to ensure portability
of the aggregation. Measurements of API call and interrupt latency
indicate a maximum overhead of approximately 6us and 9pus, respec-
tively. Since the task cycle required in embedded systems is from 1
ms to 10 ms, an interrupt response time of a few ys is sufficient for
real-time performance.

These results demonstrate Homare’s effectiveness in aggregat-
ing multiple software while meeting the critical requirements of
embedded systems.
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