Homare: Platform for Aggregating Embedded Systems on
Multi-core Processor

Kanta Okugawa, Koichi Mouri

Ritsumeikan University
{kokugawa,mouri}@asl.cs.ritsumei.ac.jp

1 Introduction

Embedded systems are becoming increasingly sophisticated and
multifunctional. In particular, advanced and complex in-vehicle sys-
tems now consist not only of bare-metal applications that perform
single operations, but also a variety of software, including RTOSs,
GPOSs, and their applications. As software in embedded systems in-
creases, the number of hardware components also grows, including
embedded devices, peripheral devices, and the wiring that connects
them. This leads to problems such as increased weight, space con-
straints inside the product, and complexity of hardware design. On
the other hand, multi-core processors are also becoming widely
used in embedded devices. However, many existing embedded soft-
ware are designed with single-core and cannot take full advantage
of multi-core. Additionally, porting these software to use multi-core
efficiently is difficult. We solve these problems by running multi-
ple embedded software, which have been running separately, on a
single hardware equipped with a multi-core processor.

Several problems exist when porting embedded software and
running multiple systems on the same hardware. One is that embed-
ded software programmed to depend on specific cores for operation
on a single core does not anticipate multi-core, leading to increased
porting complexity when aggregating them. In addition, although
virtualization methods enable multiple OSs to run through hard-
ware emulation, the hurdle to guaranteeing real-time performance
is high for embedded systems. Therefore, we propose Homare, a
platform that enables the aggregation of embedded software focus-
ing on improving portability and ensuring real-time performance.

2 Approach

Virtualization technology is used to run multiple systems on a
single hardware. For embedded systems, existing hypervisors like
Bao[1] and SPUMONE][2] use lightweight virtualization layers and
static resource partitioning to enable lightweight execution. Other
systems such as LynxSecure, QNX Hypervisor, and eMCOS Hyper-
visor adopt similar methods to meet the requirements of embedded
systems. However, existing virtualization is too complex to reduce
code size and overhead in portability and real-time performance.
Homare combines LPAR (Logical Partition) with minimal para-
virtualization to achieve the aggregation shown in Figure 1. Es-
sentially, using the LPAR, Homare allocates resources and boots

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

APSys 24, Sept 04-05, 2024, Kyoto Japan

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

RTOS GPOS
[Homare Library Homare Library

Beametal App E Beametal App E
[Homare Library E [Homare Library E

SYAVAN
Homare API }
Homare
[Device [Device H [Device | | [Device]
\ Memory \
5 ' ; [Core | Core |

Figure 1: The overview of Homare.

the guest OS, allowing direct control of exclusive resources to en-
sure real-time performance. Only certain core-dependent processes
and memory virtualization, device sharing are managed by para-
virtualization through API calls. The functions that enable these
configurations include APIs and a library of stubs that call the APIs,
boot emulation, and hardware resource allocation management.

3 Result

We implemented Homare on a Raspberry Pi 3 to aggregate bare-
metal applications and four RTOSs: FreeRTOS, TOPPERS/ASP3,
TOPPERS/FMP, and T-Kernel 2.0. Homare assigns and activates
multiple cores for each RTOS, allowing guest operating systems to
run independently on any core.

The evaluation focused on two essential requirements for ag-
gregation: portability and real-time performance. The number of
source code modifications required during the aggregation ranged
from 4 to 19. These modifications can be extracted mechanically, so
modification of the guest OS is easy enough to ensure portability
of the aggregation. Measurements of API call and interrupt latency
indicate a maximum overhead of approximately 6us and 9pus, respec-
tively. Since the task cycle required in embedded systems is from 1
ms to 10 ms, an interrupt response time of a few ys is sufficient for
real-time performance.

These results demonstrate Homare’s effectiveness in aggregat-
ing multiple software while meeting the critical requirements of
embedded systems.

References

[1] José Martins et al. 2020. Bao: A Lightweight Static Partitioning Hypervisor for
Modern Multi-Core Embedded Systems. In Workshop on Next Generation Real-
Time Embedded Systems (NG-RES 2020) (OpenAccess Series in Informatics (OASIcs),
Vol. 77). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 3:1-3:14.

Wataru Kanda et al. 2008. SPUMONE: Lightweight CPU Virtualization Layer for
Embedded Systems. In 2008 IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing, Vol. 1. 144-151.

&2

	1 Introduction
	2 Approach
	3 Result
	References

